Adaptación mediante el modelo de Rasch de tres medidas para estimar la decisión e indecisión de carrera y la ansiedad decisional.
Resumen
La transformación del mundo laboral, determinada por los avances tecnológicos, y la velocidad cada vez mayor en la que se transforman las ocupaciones actuales, un número creciente de personas se enfrentan a la necesidad de familiarizarse con nuevas profesiones e industrias, las cuales podrían ofrecer nuevas oportunidades de empleo y perspectivas de carrera. En función de ello, resulta sumamente relevante que los orientadores de carrera cuenten con herramientas adaptadas, acordes al contexto actual, que les permitan lograr mejoras en el proceso de elección de carrera, por lo que el objetivo del presente estudio fue adaptar tres medidas, de amplio uso internacional y adecuadas propiedades psicométricas, que permiten estimar el nivel de decisión e indecisión de carrera y de ansiedad decisional, a la población hispanohablante. La muestra estuvo compuesta por 658 estudiantes argentinos, de los cuales 365 (55.5%) fueron de sexo femenino y 292 (44.4%) de sexo masculino, con edades comprendidas entre 15 y 19 años (M = 16.56; DE = .754), pertenecientes a escuelas tanto públicas (32.8%) como privadas (67.2%). Se realizó un análisis factorial exploratorio y se aplicó el modelo de escala de clasificación, derivado del modelo de Rasch, para evaluar las propiedades psicométricas de las escalas. A partir de los resultados se obtuvieron tres medidas con propiedades psicométricas adecuadas. Dichos instrumentos podrán ser utilizados por profesionales de orientación vocacional con el objetivo de realizar diagnósticos más precisos y diseñar intervenciones que permitan fomentar un adecuado proceso de elección.
Adaptation of three measures to estimate career decision and indecision and decisional anxiety using the Rasch model
Abstract
The transformation of the current work-force determined by the technological advances affects and presents new challenges to the career decision-making process. As a result, and given the increasing speed at which current occupations are transformed an increasing number of people face the need to become familiar with new occupations and industries which could offer new employment opportunities and career perspectives. Based on this, it is extremely important that career counselors count on adapted tools to enable them achieve some improvement in the decision-making process; therefore, the main purpose of this study was to adapt three widely used measures and with adequate psychometrics properties to assess the level of career decision or indecision and the decisional anxiety within the Spanish-speaking population. The sample consisted of 658 Argentine students who attended high school, 365 of which (55.5%) were female and 292 (44.4%) male, aged between 15 and 19 years (M = 16.56; SD = .754), belonging to both public (32.8%) and private (67.2%) schools. An exploratory factor analysis was carried out and the classification scale model,- derived from the Rasch model-, was applied to evaluate the psychometric properties of the scales. From the results the factorial structure of the scales was confirmed and three measures with adequate psychometric properties were obtained. These instruments may be used by career counselors to optimize the career decision-making process. The practical and methodological implications are discussed as well as the limitations of the present study.
Keywords: Career Decision – Making - Career Choice Anxiety - Item Response Theory (IRT) - Rating Scale Model (RSM).
Citas
American Psychological Association. (2002). Ethical principles of psychologists and code of conduct. American Psychologist, 57, 1060–1073. Recuperado de: http://www.apa.org/ethics/code2002.html.
Andrich, D. (1978). Rating formulation for ordered response categories. Psychometrika, 43(4), 561-573. https://doi.org/10.1007/BF02293814
Andrich, D., de Jong, J.H.A.L., & Sheridan, B.E. (1997). Diagnostic opportunities with the Rasch model for ordered response categories. En J. Rost, & R. Langeheine (1997). Applications of latent trait and latent class models in the social sciences (pp. 59-72). New York: Vaxmann.
Arntz, M., T. Gregory, & U. Zierahn (2016). The Risk of Automation for Jobs in OECD Countries: A Comparative Analysis. Employment and Migration Working Papers, 189. doi: https://doi.org/10.1787/5jlz9h56dvq7-en.
Blustein, D. L., Ellis, M. V., & Devenis, L. E. (1989). The development and validation of a two-dimensional model of the commitment to career choices process. Journal of Vocational Behavior, 35(3), 342-378. https://doi.org/10.1016/0001-8791(89)90034-1
Bond, T., & Fox, C. M. (2015). Applying the Rasch model: Fundamental measurement in the human sciences. New York: Routledge.
Brown, S. D., Hacker, J., Abrams, M., Carr, A., Rector, C., Lamp, K., Telander, K. J., & Siena, A. (2012). Validation of a four-factor model of career indecision. Journal of Career Assessment, 20, 3–21. https://doi.org/10.1177/1069072711417154
Brown, S. D., & Rector, C. C. (2008). Conceptualizing and diagnosing problems in vocational decision making. Handbook of counseling psychology, 4, 392-407.
Brynjolfsson, E., & McAfee, A. (2014). The second machine age: Work, progress, and prosperity in a time of brilliant technologies. New York, NY: WW Norton & Company.
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd. ed.). Hillsdale, NJ: Erlbaum.
Curtis, D. D. (2004). Person misfit in attitude surveys: Influences, impacts and implications. International Education Journal, 5(2), 125-144.
Hacker, J., Carr, A., Abrams, M., & Brown, S. D. (2013). Development of the career indecision profile: Factor structure, reliability, and validity. Journal of Career Assessment, 21(1), 32-41. https://doi.org/10.1177/1069072712453832.
Hagquist, C., & Andrich, D. (2017). Recent advances in analysis of differential item functioning in health research using the Rasch model. Health and quality of life outcomes, 15(1), 181. https://doi.org/10.1186/s12955-017-0755-0
Hartman, B. W., & Fuqua, D. R. (1982). The construct validity of the Career Decision Scale adapted for graduate students. The Career Development Quarterly, 31(1), 69-77. https://doi.org/10.1002/j.2164-585X.1982.tb01535.x.
Inchausti, F., Prieto, G., & Delgado, A. R. (2014). Análisis Rasch de la versión española de la escala Mindful Attention Awareness Scale en una muestra clínica. Revista de Psiquiatría y Salud Mental, 7(1), 32-41. https://doi.org/10.1016/j.rpsm.2013.07.003
Lam, M., & Santos, A. (2017). The Impact of a College Career Intervention Program on Career Decision Self-Efficacy, Career Indecision, and Decision-Making Difficulties. Journal of Career Assessment. https://doi.org/10.1177/1069072717714539.
Lent, R. W. (2018). Future of work in the digital world: Preparing for instability and opportunity. The Career Development Quarterly, 66(3), 205-219. doi: https://doi.org/10.1002/cdq.12143
Linacre, J. M. (2002). Optimizing rating scale category effectiveness. Journal of Applied Measurement, 3(1), 85-106. doi:10.1.1.424.2811
Linacre, J. M. (2018). A User's Guide to Winsteps. Recuperado de: https://www.winsteps.com/manuals.htm
Lindley, L. D. (2006). The paradox of self-efficacy: Research with diverse populations. Journal of Career and Evaluation in Counseling and Development, 26, 137-142. https://doi.org/10.1177/1069072705281371.
León, A. E. F. (2006) La orientación vocacional en los colegios públicos y privados de Lima: situación actual y propuesta de un programa de acción para la secundaria pública. Revista de Investigación en Psicología, 9(1), 23-35.
Lorenzo-Seva, U., & Ferrando, P. J. (2013). Factor 9.2: A comprehensive program for fitting exploratory and semiconfirmatory factor analysis and IRT models. Applied Psychological Measurement, 37(6), 497-498. http://dx.doi.org/10.1177/0146621613487794
Messick, S. (1994). The interplay of evidence and consequences in the validation of performance assessments. Educational researcher, 23(2), 13-23. https://doi.org/10.3102/0013189X023002013
Miller, A. D., & Rottinghaus, P. J. (2014). Career indecision, meaning in life, and anxiety: An existential framework. Journal of Career Assessment, 22(2), 233-247. https://doi.org/10.1177/1069072713493763
Mimura, C., & Griffiths, P. (2008). A Japanese version of the Perceived Stress Scale: cross-cultural translation and equivalence assessment. BMC psychiatry, 8(1), 85. https://doi.org/10.1186/1471-244X-8-85.
Mislevy, R.J., & Bock, R.D. (1990). PC-Bilog. Item analysis and test scoring with binary logistic models. Chicago: Scientific Software International.
Osipow, S. H., Carney, C. G., Winer, J. L., Yanico, B., & Koshier, M. (1976). The Career Decision Scale (3rd ed.). Columbus, OH: Marathon Consulting & Press and Odessa, FL: Psychological Assessment Resources.
Osipow, S. H., & Schweikert, D. (1981). The Career Decision Scale: A test of concurrent validity. Psychological Reports, 48(3), 759-761. https://doi.org/10.2466/pr0.1981.48.3.759.
Osipow, S. H., & Winer, J. L. (1996). The use of the Career Decision Scale in career assessment. Journal of Career Assessment, 4(2), 117-130. https://doi.org/10.1177/106907279600400201.
Prieto, G., & Delgado, A. R. (2003). Análisis de un test mediante el modelo de Rasch. Psicothema, 15(1), 94-100.
Roche, M. K., Carr, A. L., Lee, I. H., Wen, J., & Brown, S. D. (2017). Career indecision in China: Measurement equivalence with the United States and South Korea. Journal of Career Assessment, 25(3), 526-536. https://doi.org/10.1177/1069072716651623.
Schwab, K. (2016). The fourth industrial revolution. Moscow: Eksmo.
Shimizu, K., Vondracek, F. W., & Schulenberg, J. (1994). Unidimensionality versus multidimensionality of the career decision scale: A critique of Martin, Sabourin, Laplante, and Coallier. Journal of Career Assessment, 2(1), 1-14. https://doi.org/10.1177/106907279400200101.
Tabachnick, B. G., & Fidell, L. S. (2013). Using multivariate statistics (6th ed.). Boston, MA: Allyn and Bacon.
Wright B. D. & Masters G.M. (2002). Number of Person or Item Strata. Rasch Measurement Transactions, 16 (3). Recuperado de: https://www.rasch.org/rmt/rmt163f.htm
Wright, B. D. & Stone, M. H. (2003). Five steps to science: Observing, scoring, measuring, analyzing, and applying. Rasch Measurement Transactions, 17(1), 912-913. Recuperado de: https://goo.gl/ZJagiH
- Los autores conservan los derechos de autor y garantizan a la revista el derecho de ser la primera publicación del trabajo bajo una Licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional, que habilita a otros compartir el trabajo con un reconocimiento de la autoría del trabajo y de la esta revista como la publicación inicial.
http://creativecommons.org/licenses/by-sa/4.0/
- Copyright Notice for the author(s)
The authors publishing in this journal agree on the following terms:
a-The authors own the copyright on the material published and guarantee the journal the right to hold the firstly-published work licensed under a Licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional.
http://creativecommons.org/licenses/by-sa/4.0/
that allows others to share the work with an acknowledgement of the manuscript authorship and its first publication in this journal.
Privacy Statement
The names and electronic addresses in this journal will exclusively be used for the declared purposes and will not be available for any other purpose or person whatsoever.